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Once an interplanetary mission is defined, such
as the delivery of a sclentific payload to a planet
or the execution of an exploratory manned round trip
to Mars, a preliminary planning phase must be en-
tered that may be defined as mission analysis. The
ultimate, but never completely attalned, goal of
mission analysis is the accurate determination of
such things as cost, feasibllity, and design re-
quirements of proposed vehlecle systems.

INTRODUCTION

To make the problem more definitive, a figure
of merit is usually chosen and is optimized under
the influence of & host of practical and analytical
constraints. One of the most readily accepted fig-
ures of merit that may be chosen to be optimized in
mission analysis is the vehicle gross weight for
some specified payload. Interplanetary missions
with low-thrust rocket vehicles are attractive be-
cause they promise low propellant welght require-
ments. In the case of electric propulsion, this ef-
fect 1s primarily offset by high powerplant weight
requirements and thrustor capability limitations.
But it is also desirous to examine the effect of
performance features and limltations of many other
vehicle subsystems, such as propellant storage and
feed systems and biological radlation shielding.
Therefore, total mlssion analysis involves appropri-
ate compromise of all parts of the integrated vehi-~
cle with mission profile and energy requirements.

This paper is concerned with trajectory analy-
sis, a field of study that is important in mission
analysis., The purpose of this paper is to present
some of the standard procedures and results of low-
thrust trajectory methods that are in use by the
Mission Analysis Branch at the NASA Lewis Research
Center and to describe a more recently developed
trajectory analysis technique that has proved to be
quite useful in mission analysis.

Low-Thrust Trajectory Considerations

Trajectory energy requirements dictate not only
the amount of propellant needed but also the basic
capability of a vehicle to perform a given mission
profile.

In high-thrust trajectory analysis, energy re~-
quirements are evaluated independent of vehicle
characteristics, using the familiar "AV." But in
low-thrust trajectories, the energy requirements are
affccted by the thrust and jet velocity. Converse-
ly, the required performance of vehicle subsystems,
such as optimum thrustor jet velocity and thrust,
are strongly affected by trajectory energy require-
ments. Therefore, the trajectory calculations must
usually be made an integrsl part of the mission
analysis,

When the total mission optimization is at-
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tempted, much interplay occurs between the trajec-
tory itself and the trajectory-dependent vehicle
subsystems, thereby continuously sharpening the
definition of the desired trajectory and vehicle de-
sign. A complete mission analysis entails the cal-
culation of many trajectories for low-thrust vehi-
cles in the search for optimum vehicle design pa-
rameters. The trajectory calculations must recog-
nize certein practical constraints that apply to the
vehicle.

It is usually assumed that the vehlicle employs
some type of electric propulsion. For maximum per-
formance during propulsion phases, the vehicle
should operate at the maximum available power level.
Therefore, an immediate operating constralnt that
can be placed on the wvehicle 1s that it uses a pre-
specified Jet power output capability. For example,
trajectory solutions have been made for a hypothet-
ical electric rocket with a varisble thrust and Jet
velocity capabllity but constrained by constant Jet
power.1;2 This "varisble-thrust" trajectory tech-
nique leads to the best possible rocket performance
at any glven Jjet power.

However, the constant thrust thrustor is prob-
ably more representative of early vehicles. There-
fore, the particular low-thrust trajectories con-
centrated upon 1n this paper assume that thrustors
are constrained to operate not only at constant jet
power but also at constant thrust and jet velocity
with on-off propulsion periods.3 In other words,
the thrustor simply operates at only one rating, or
not at all. This mode of operation is referred to
herein as "power-coast-power." Power-coast-pover
trajectories have proved to be far more difficult to
analyze than variable-thrust trajectories.

The requirement that the trajectory actually
represents a transfer between two specified posi-
tions and velocities and the desire that the trans-
fer be as efficient as possible, act as further con-
straints in the problem. These constralints neces-
sitate the solution of the "two-point boundary value
problem” and the "minimum-propellant trajectory.”

Trajectory problems become two-point boundery
value problems when some 1nitisl conditions of a
solutlion must be found to satlsfy prespecified final
conditions, Low-thrust trajectories are character-
ized by very long propulsion periods during which
the thrust vector must be controlled according to
some stipulated program. Solution of the proper
equations of motion calls for, except in the most
simple cases, numericel integration methods. The
two-point boundary value problem must then be solved
as an initial-value problem, wherc & complete set
of values for all the varlables being integrated
must be known at the inltial point. The correct
initial set 1s only partly known. Iterative guess-
ing techniques must be employed untll the complete
set of initial-point variables and the required
thrust-control program necessary to meet the speci-
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fied end conditions are found. Attempts at allevi-
ating the two-point boundary value problem for low
thrust can sometimes be made by arbltrary policies
for applying the available acceleration vector over
the propulsion period.4’5 Nonoptimum thrust vector
control, however, can result in excessive propel-
lant requirements,

Each time performance characteristics of the
vehicle are stipulated, along with any other con-
straints that might be included, the most efficilent
thrust vector control program should be found. This
is a part of the problem that 1s always present in
case of low-thrust propulsion. Therefore, when the
term minimum-propellant trajectory is used, 1t sim-
ply means that the most efficient application of
the avallable thrust has been used in the trajectory
solution to minimize energy requlrements. Regard-
less of the number and type of constraints placed on
a trajectory and vehicle, optimum overall missions
will be fundamentally constructed with minimum pro-
pellant trajectories.

When 1t is specified that the resultant trajec-
tory solution must have the most efficient thrust
vectoring program in order that some measure of ve-
hicle performance is optimal (e.g., minimum propel-
lant consumption), optimization techniques such as
the variastional calculus are needed. This 15 an ex~
tension of the low-thrust trajectory problem that
has recelved much attention. The two-polnt boundary
value problem must still be solved with the varia-
tional calculus, but vehicle performance is simul-
taneously optimized, giving more significance to the
trajectory solution. For the power-cosst-power
problem, the thrust and jet velocity are held con-
stant at prescribed values, while the variational
solution determines the optimum thrust direction and
the placement of a coast perlod to result in minimum
propellant consumption.

Typlcal Trajectory Characteristics

Figure 1 is an example of a "map" of varia-
tional power-coast-power trajectory solutions. This
figure illustrates the characteristics of one-way
Earth to Mars heliocentric transfers at one initial
thrust to weight ratio and specific impulse. Circu-
lar, coplanar hellocentric orbits have been assumed
for Earth and Mars. Travel angle (heliocentric cen-
tral angle) 1s plotted against travel time along
contours of constant final mass ratio Mf/Mo. Con~
stant final mass ratio 1s synonomous with constant
propellant consumption and is & measure of the en-
ergy requirement of the trajectorles. Each travel
angle and time palr constitute a solution to a two-
point boundary velue problem with the calculus of
variations., For the illustrated thrust and specific
impulse, many time and angle combinations exlst
within the boundary marked "all-propulsion.” How-
ever, no solutions exlst outside the boundary. All-
propulsion, or zero coast time, solutions result
when the energy requirements are so severe that the
thrustor must operate continuously over the avall-
able time.

Any one point on a map such as figure 1 is an
optimum solution, in the sense of minimum propellant
consuned for the stated thrust, specific impulse,
and other given operating constraints. If proper
compromlses between trajectory energy requirements
and vehicle performance levels are to be made, one
map such as this is of limited wvalue to mission

-

analysis. Each new value of thrust to welght ratio
or speclfic impulse ralses the need for yet another
map. Even at a fixed one-way time and angle combin~
ation, varlational solutions possess different final
mass ratios (end, therefore, energy requirements)
for each new thrust to welght ratio or specific im-
pulse. An example of the effect of thrust alone is
given in figure 2.

In figure 2, a curve of final mass ratlio versus
initial acceleration (due to thrust) 1s shown. This
curve is for an arbitrary, fixed travel angle and
time combination with specific impulse fixed at 6000
seconds.

The lowest final mass ratlo and initial accel-
eration recorded on the curve is an all-propulsion
solution. Note that at the low-acceleration end of
the curve, mass ratlo can be seen to vary quite
strongly. This sensitivity decreased markedly as
acceleration is increased.

Optimum Probe and Round-Trip Missions

With the goal of low-thrust mission analysils
in mind, computer programs have been developed to
study orbiting probe and round-trip misslons, using
the calculus of variations for power-coast-power
heliocentric trajectories. Examples of these calcu-
lations are discussed here. The performance chart
of a typical orbiting probe trip to Mars is shown in
figure 3 where final mass ratio 1s presented as a
function of initial acceleration for a range of jet
power to mass ratio in watts per kilogram.

The problem model assumes a two-dimensional
solar system with the planets in circular orbits
about the Sun. The mission trajectory is actually a
"patched" sequence of two-body planetocentric and
heliocentric phases. The heliocentric variational
trajectories begin and end with the vehicle in cir-
cular orbit about the Sun at each respective planet-
Sun radius. Low-thrust planetocentric escape and
capture phases are included in this mission. The
mission commences with the probe vehicle in low or-
bit about the Earth and ceases with 1t in low orbit
gbout Mars, hence, the term "orbiting probe." Much
simplification is introduced by the assumption that
near-planet escape and capture maneuvers are two-
body trajectories (spirals) influenced only by the
planet in question. It 1s assumed that the planet
ceases to exert influence when the vehlcle 1s at
escape energy, because, for low thrust, escape oc-
curs at large radil relative to the planets. Actual
calculations of the sprials could be lengthy. Much
time 1is saved by using precalculated generalized
spiral solutions™ to which empirical curves have
been fitted. In this way, the appropriate time and
propellant consumption of each spiral maneuver may
be charged to the mission.

Trajectory calculations for optimum orbiting
probe missions make further use of the calculus of
variations to ensure that the most optimum helio-
centric travel angle is used for any stipulated tra-
vel time. In this way, travel angle 1s not an inde-
pendent parameter for optimum probe missions. The
particular map shown in figure 3 is for a specified
total time of 300 days from low Earth orbit to a low
Mers orbit.

The boundary curve at the left side of the
chart consists of all-propulsion solutions. This
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boundary represents the lowest possible acceleration
that may be used at each jet power to mass ratio.

In figure 4, the same problem model snd tech-
nique has been used to generate performance maps for
optimum round trips to Mars., Each chart of this
type 1s for a glven mission time (from low Earth or-
Dit back to low Barth orbit) and wait time (in low
Mars orbit), in this case 380 and 10 days, respec-
tively. Again, low-thrust planetocentric spirals
are included in the solutions. The round trip final
mees ratio Mp/M, 1is shown as a function of ini-
tial ascceleration along lines of constant jet power
to mass.

There is a major difference between trajectory
calculations for optimum round trips and for opti-
mum probes that is not obvious in figure 4. 1In the
round-trip problem, the calculus of varlations is
further applied to result in the optimum pair of
outbound and return variational trajectorles in such
a way that propellant requirements for the complete
trip be minimized.® Therefore, heliocentric travel
angles of the outbound and return trajectories do
not correspond to optimum probe cases. Each point
on the round-trip map represents the best possible
combination of travel time and angle for outbound
and return minimum-propellant trajectoriles for the
given problem model, mission profile, and operating
constraints,

As wilth the orbiting probe, a boundary curve
appears as a characteristic of these charts. For
the case shown here, an all-propulsion trajectory on
the outbound leg of the round-trip mission estab-
lishes a lower limit of possible sacceleration to ac-
complish the trip at each power to mass ratio.

Jet power to mass ratic 1s used as a field pa-
rameter on both round-trip and probe maps rather
than specific impulse; however, thls 1s a completely
arbitrary choice. At each power to mass and thrust
to mass, a specific impulse (Jet velocity) is de-
fined, since Jet power is directly proporticmnal to
thrust and jet velocity.

Terminal calculations of necessary vehlcle com-
ponent weights can be applled to baslc mission per-
formance charts, such as figures 3 and 4, to result
in nearly exact relations between vehlcle gross
weight and useful payload. A sophisticated view of
those components may be taken, such as ion thrustors
with an efficiency related to specific impulse, en-
glne welght related to thrust, and, of course, elec-
tric powerplant welght related to power.

It would be most desirable to base all low-
thrust mission studies on accurate variational tra-
Jjectories; however, experience has shown that ambi-
tious mission studies with variational power-coast-
pover trajectories involve lengthy and, therefore,
costly computer calculation. Although they do add
to the complexity of the problem, variational tra~
Jectory methods are not the chief source of diffi-
culty, The major problem area 1s the need for re-
peated solutions of the ever~present two-point
boundary value problem with numerically integrated
trajectories. Whatever the major source of diffi-
culty, preliminary design studies for low-thrust
missions are too often hindcred by the complexity of
the trajectory calculations. The effects of changes
in mission profille, such as different parking orbit
radii, mission and wait times, and supercircular
aerodynamic reentry options, become very difficult
to evaluate.

If gulde lines for the feasibility and design
requirements of low-thrust vehicles are to be drawn,
trajectory calculations must be available with
higher speed and flexibility. Faster and simpler
trajectory solution approaches, even with the admis-
sion of some degree of error, would allow a wide-
range analysis of many important areas in the over-
gll mission problem.

Approximation by Correlation

Approximate trajectory solutions can play an
important role in the low-thrust mission problem if
such solutions can satisfy the speed and flexibil-
1ty requirements already mentioned. Some degree of
approximation is always 1nvolved in any calculetion,
as evidenced in the discusslon of the probe and
round-trip~problem model. Large errors should be
avolded, but extreme precision is not required when
slower but more exact methods are avallable for
backup calculations.

What 1s described in the following section is
a new technique of obtaining approximate solutions
to varistional trajectory problems. A fundamental
point to meke here is that thlis method does not in-
volve approximate solutions to equations of motion
for a variational trajectory problem. Instead, the
principal idea 1s to develop general relations among
the various "modes" of rocket operation based on the
dynamlcs of their trajectory solutlons. These modes
of rocket operstion msy be impulsive (very high
thrust), constant scceleration, constant thrust and
jet velocity (power-coast-power), constant jet power
with variasble thrust, and others. 1In this way, any
one solution of & given trajectory problem by a
specific mode of rocket operation may be used as &
reference., Energy requirements of the given tra-
Jjectory problem for other operating modes are ob-
tained by correlastion with the reference mode solu-
tion, using the appropriate dynamic relationms.
Hence, & more descriptive term for this method is
correlation.

The necessary dynamic relations will be based
on analytic solutions of a simple problem. The re-
sult will be a "linking parameter" that 1s used in
an anslogous manner as the familiar AV of high-
thrust trajectory analysis. This parameter can
actually replace AV Dbecause 1t 1s a near-invariant
factor within and among high- and low-thrust modes
of operation.

Characteristic Velocity and Length Increments

The characteristic velocity increment AV is
a femlliar parsmeter of trajectory analysls. When
used as an Ilnvariant of trajectory solutions in the
case of high~thrust trajectory analysls, propellant
requirements, and vehicle performance are general-
1zed with respect to Jet velocity. However, AV has
not been as useful in low-thrust trajectory analysis
because it 1s apparently a highly variasble function
of the thrust or mode of rocket operation.

In actuality, &V is the velocity increment
that a rocket would experience on a rectilinear
fllght path in fileld-free space. Thls definition is
directly traceable back to the so-called ideal
rocket equation, which is the equation of motlon in
this system:




av = a 4t (1a)

where V 1is velocity, a 1is acceleration due to
thrust, and t 1is time. Alternatively,

F
av = ot (1)

where F 1s thrust and m is mass, and so

N =ffa(dt (2)

An equivalent AV can be evaluated for any trajec-
tory solution by using appropriate expressions for
the time integral of acceleration megnitude. For
example, a familiar expression for AV is,

Mp
&V = -vy In ﬁ; (3)

where vy 1is Jet velocity. Equation (3) is simply

a solution of equation (2) for constant thrust and
Jet velocity.

Every rectilinear trajectory also has a defin-
able characteristic length increment L.

L=/vat (4)

This concept of a characteristic length incre-
ment L 1s important in the ensulng development of
simple dynamic relations among various modes of
rocket operation.

It will be shown 1n the solution of slmple
rest-to-rest, rectilinear trajectories 1ln field-free
space, that basic emergy requirements depend on the
mode of rocket operation, travel time, and L. 1In
thisg way, the dynamics of all modes of operation can
be interrelated through L and travel time T,

Expressions of this type are easily developed
for this simple proble%. Similar forms have been
used by other authors. »7  The contribution of this
paper is in the further application of such expres-
sions in a correlation-approximastion method.

As with AV, an equivalent L can then be
evaluated for any trajectory solution in the
inverse-square force fleld. It will be shown that
if this equivalent L is treated as an invariant of
the trajectory problem, it becomes the linking pa-
rameter mentioned earlier.

A straightforward procedure for correlating
trajectory energy requirements between any two modes
of rocket opcratlon can be easlly constructed with
relations between L and propulsive requirements.

The flrst step is a reference solution of the
specific trajectory problem in the inverse-square
force fleld by any favored mode of rocket operation.
A point that must be emphasized here is that the
reference-mode solution must pertain to the same
trajectory problem that is of interest in the new
mode, Travel time, travel angle, initial and final
positions and v-locities must agree. The second
step is the evaluatlion of equivalent L from the
appropriate propulsive energy requlrement relation
for the reference mode., The final procedure is the
evaluation of propulsive requirements in the new
mode based on the use of the characteristic length
with the appropriate dynamic relation.

All that is required further are relations be-
tween L and propulsive requirements for each mode
of rocket operation for rectilinear, field free,
rest-to-rest, and trajectory solutions.

Rectilinear Trajectory Solutions

In figure 5, two simple examples of rectilin-
ear, field-free, rest-to-rest trajectory solutions
are developed. The first (a) is for infinite-thrust
or impulsive-thrust solutions, while the second (b)
is representative of low-thrust solutions. For sim-
plicity, the low-thrust example is for constant ac-
celeration without a coast period.

The infinite-thrust solution 1s shown graphi-
cally by its veloclty chronology. The acceleration
history is not shown since it only consists of two
infinite impulses. The first impulse with infinite
acceleration changes the velocity from zero to
Vmax, which i1s the velue required to bring the
rocket to position L at time T. The rocket pro-
ceeds at constant veloclty Vpgyx until time T,
when it 1s brought back to rest instantaneously by
applying a second impulse equal to Vp... There-
fore, for the impulsive-thrust solution:

L = Vpy T (5)
end
N = 2Vngy = 2 (6)

With constant acceleration, velocity varies
linearly with time. Since 1t has been specified
that there be zero veloclty at the terminals and no
coast phase, the velocity diagram must be an isos-
celes triangle. The veloclty increases linearly
from zero to Vp,, 8t half time T/2 eand then must
decrease linearly to zero again at time T. To ac-
complish this, the acceleratlion must be directed
forward for half the trip and then reversed for the
remaining half.

Since L is the area of the velocilty triangle,
it can be shown to be a function of the pesk veloc-
ity Vpgx and T:

=]

L =Vm&x§ (7)
Vpax 18 the product of acceleration and T/2:
T
Vmax =83 (8)

Combining equations (7) and (8) shows the nec-
essary acceleration to depend upon L and T:

a=4—L (9)
T

Previously, AV has been defined as the total

integral of the acceleration magnitude. In this
case, for constant acceleration then

AV:_/;:;dt:aT:i*TE (10)

If the result of equation (10) is compared with
the corresponding result for the impulsive solution

\
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in equation (6), 1t is seen that, for these recti-
linear trajectory problems, the AV for a constant-
acceleratlon no-coasting solution is simply twice
the AV of the impulsive-thrust solution of the
same trajectory problem. This observation provided
the fundamentals for the correlation solution of
inverse-square force field trajectory problems, be-
cause this predicted relation holds nearly true for
inverse~square trajectory solutions. Note the fact
that AV has been shown to vary by as much as

100 percent, 1f it is assumed that the equivalent L
of a trajectory problem is an invarilant.

With little difficulty, equations that relate
the equivalent characteristic length to propulsive
energy requirements may be derlved for other modes
of rocket operation. A few are summarized here,
without development:

Constant acceleration with coasting:

L=% (Tz - tﬁ) (11)

N = o (12)

vhere t, 1s coast time. AV varies inversely with
coast time. If coast time is zero, equation (12)
reduces to equation (10). If coast time 1s made
equal to T, equation (12) reduces to equation (6).

Constant thrust and constant jet velocity all-
propulsion (no coast):

W2 2
L= -a—g(l - Jl - %f’;) (13)

2
v
a, =% J (14)
T ( , LY
VJ T
v +TT“
AV = 2vy1n T (15)
VITF

where &, 1is initial acceleration, vy 1s Jet ve-
locity, and T 1is transfer time. With constant
thrust and jet velocity, mass flow rate is constant
and therefore acceleration a must be treated as a
variable. All-propulsion with constant thrust and
Jet velocity is simply a special case of the power-
coast~power mode. For all-propulsion cases, the a,
is dependent on I, AA7) and T because the coast
time 1s specified as zero. Equations (14) and (15)
evaluate the minimun &, and the maximum AV of
constant-thrust trajectories when characteristic
length is known.

0

Constant thrust and constant jet velocity
power-coast-power (with coast):

L=V_§<_ l_aotE)z (T-t) ( pﬂ
8 VI
(18)

2
-V /2v,
2a L - 2v2J(1 el J)

- (1n
a,T - VJZ; -e AVF,JT

where tp is propulsion time. Equation (17) is de-

rived from equation (16) and requires an iterative
solution for AV when L, T, vy and a, are
given.

AV =

Constant jet power with varisble thrust:
L =4 o (18)
a == (19)

where J = faz dt.

Equation (18) can serve to determine equivalent
characteristic length of a trajectory problem based
on variable thrust solutions in the inverse-square
force field.

A discussion of variable thrust trajectories
is beyond the scope of this paper. Equations (18)
and (19) have nevertheless been included because
vaeriable-thrust trajectory solutions are a poten-
tially good source of reference values of character-
istic length, since they are more easily obtained
than power-coast-power solutions.

Alternate parametric forms of equations (11)
to (19) can be developed if desired.

Accuracy Comparisons

-~

- In figure 6, the approximation 1s compared with
actual calculus of variations solutions for one-way
heliocentric trajectories from Earth to Mars. With
travel angle and time fixed, & curve of actual solu-
tions is shown for power-coast-power trajectories
with specific impulse fixed at 6000 seconds. This
curve Jjolns with another curve conslsting of all-
propulsion solutions along which specific impulse
varies between 1000 seconds and infinity. The
equivalent AV evaluated from the jet velocity and
the actual mass ratio 1s shown for a wide range of
initial acceleration from less than 10-3 meters per
second squared to infinlty. The approximate curves
shown here falthfully follow the characteristics of
the "exact" solutions. All the approximate AV's
shown are calculated from egquations (15) and (17).
The equivalent L was obtained from the impulsive
(infinite-thrust) solution of the same problem by
using equation (8).

Since the length was evaluated from an
impulsive~thrust solution, errors in AV are larg-
est at the extremely low accelerations and are zero
when acceleration is infinite.

The implementation of the correlation method
presented is dependent on the assumed invariancy of
equivalent characteristic length in actual inverse-
square trajectory solutions. In the actual case, L
is not truely invariant, and this is the source of
errors in the correlation. Equivalent L, for a



given trajectory problem, is known to vary slightly
between different modes of operatlon. Also, L
varies within a given mode of operation. Figure 7
11lustrates the variation of characteristic length
within a mode for power-coast-power trajectory so~
lutions. The actual equivalent I, 1n meters, for
a fixed trajectory problem is shown to vary with
initial amcceleration. Equation {16) has been used
with the data from figure 2 to produce the actuel
equivalent length at each acceleratlon. Note that
L varies by about 6 percent between the all-
propulsion and infinite thrust cases. Most of the
verietion in L takes place at low accelerations
(below 10-2 m/sec?).

The most accurate evaluation of L would be
obtained from a low-thrust solution that is close
to the particular area of interest. The infinite-
thrust solution, however, 18 currently the only
available means of solving the boundary value prob-
lem with real speed and flexibility. Tt ylelds a
usable value of characteristic length for approxima-
tions to the low-thrust solution at a speed far be-
yond any other solution method known. Therefore,
for the most approximate but also the most useful
application of this method to date, L 18 being
evaluated from simple impulsive-thrust transfers
with two-body conlc sectilons.

The correlation method may be used with in
infinite-thrust trajectory solutions to produce op-
timum probe and optimum round-trip performance
charts such as 1llustrated in figures 3 and 4. The
correlation is not in itself a variational solution,
80 trial-and-error methods are used to obtain opti-
mum traJjectory parameters. Nevertheless, the use of
the correlation In this way provides a speed advan-
tage of sbout 20 to 1 when compared with the time
required to produce the variational deta. Of
course, errors in final mass ratio are presented in
any mission performance chart generated with this
use of the correlation method, since L 1s obtained
from impulsive-thrust solutions. ZErrors in final
mass are largest for all-propulsion solutions. A
typical maximum error in final mess for Earth-Mars
trajectories is about 5 percent of the inltial mass.

CONCLUDING REMARKS

Trajectory calculatlons are shown to be a 4if-
ficult, but necessarily integral, part of mission
analysis for low-thrust vehicles. Although "exact”
variational trajectory studles can be made, much
time 1s consumed, which makes extensive application
of these methods prohibitive.

A correlstion approach for evaluating trajec-
tory energy requirements has been described that
satisfles the need for rapld, albeit approximate,
trajectory analysis techniques. One application of
this correlatlon method has shown a 20 to 1 speed
advantage in performing trajectory analysis. A cal-~
culation speed advantage for the correlation ap-
proach is even further enhanced by being less com-
plicated to use than numerically integrated varia-
tional trajectory methods. It 1s also more flexible
in adaptation to various mission profiles of inter-
est.

More importantly, the high-speed approximate
trajectory solution readily lends itself to all-
inclusive mission analysls techniques that go beyond
mere trajectory analysis. The magnitude of the low-

thrust trajectory problem has been markedly reduced.
Hence, sapproximate trajectory celculation methods
and realistic performance functions for vehicle sub-
systems are easily included in a mission analysis
computer program wherein preliminary vehilcles and
mission profiles may be analyzed and optimized.

Such a program is in use and has shown an effective
speed adventage of 100 to 1 over mlssion analysis
based on variational trajectory methods.
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